Review Exponent Operations #### **Vocabulary:** | Ex. $5^3 = 5 \cdot 5 \cdot 5 = 125$ | Algebraic Rule: $x^n = x \cdot x \cdot x n$ times | | |--|--|--| | Exponent: | | | | Base: | | | | Power: | | | Evaluate: _____ ^**:**_____ ## **Example 1: Writing in exponential notation** | Expanded Form | Exponential Notation | Evaluate (Fraction or Decimal) | |--|-----------------------------|---------------------------------------| | | | | | 3.3.3.3 | | | | | | | | (-4)(-4)(-4) | | | | (-2)(-2)(-2) | | | | $\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)$ | | | | | $(-5)^2$ | | | | -5^{2} | | # Try-It! - **a.** How would we write $(-3)^2$ in expanded form? - **b.** How would we write -3^2 in expanded form? - **c.** Explain whether or not $(-3)^2$ is equivalent to -3^2 . ## **Try Its:** Tell whether each statement is correct. Show work to support your answer. a) $$2 \cdot 2 \cdot 2 = 6^3$$ **b**) $$23^4 = 23^2 \cdot 23^2$$ c) $$-(5)^4 = (-5)(-5)(-5)(-5)$$ **d**) $$\left(-\frac{4}{5}\right)^2 \left(-\frac{4}{5}\right) = \left(-\frac{4}{5}\right)^3$$ **e**) $$3^4 \cdot 5^4 = 15^4$$ **f**) $$5^2 \cdot 6^3 = 30^5$$