Alternating Estimation Theorem

1. \(f(x) = x^{2/3} \) centered at \(x = 1 \)
 a. Given the function, find the fourth order polynomial
 c. Use the alternate estimation theorem to determine the error bound
 \[|f(x) - P(x)| \leq R \text{ at } x = 1.2 \]

2. \(f(x) = x^{-2} \) centered at \(x = 1 \)
 a. Given the function, find the fourth order polynomial
 c. Use the alternate estimation theorem to determine the error bound
 \[|f(x) - P(x)| \leq R \text{ at } x = 1.1 \]

3. \(f(x) = \frac{1}{1+x} \) centered at \(x = 0 \)
 a. Given the function, find the fourth order polynomial
 c. Use the alternate estimation theorem to determine the error bound
 \[|f(x) - P(x)| \leq R \text{ at } x = -.1 \]

4. \(f(x) = \sin x \) centered at \(x = 0 \)
 a. Given the function, find the fourth order polynomial
 c. Use the alternate estimation theorem to determine the error bound
 \[|f(x) - P(x)| \leq R \text{ at } x = -.1 \]

5. \(f(x) = \cos x \) centered at \(x = 0 \)
 a. Given the function, find the fourth order polynomial
 c. Use the alternate estimation theorem to determine the error bound
 \[|f(x) - P(x)| \leq R \text{ at } x = .1 \]

6. \(f(x) = \ln(1 + x) \) centered at \(x = 0 \)
 a. Given the function, find the fourth order polynomial
 c. Use the alternate estimation theorem to determine the error bound
 \[|f(x) - P(x)| \leq R \text{ at } x = .1 \]