5. The function \(v(t) = \sin^2 t \cos t \) is the velocity in m/sec of a particle moving along the x-axis from \([0, 2\pi]\). Use your calculator to answer the following.

a) Determine when the particle is stopped and when the particle is moving to the right and left.
\[
\begin{align*}
&x = 0, 1.570, 3.1415, 4.712 \Rightarrow \text{stopped} \\
&\uparrow & \uparrow & \uparrow \\
&\frac{\pi}{2} & \pi & \frac{3\pi}{2}
\end{align*}
\]

b) Find the particle's displacement for the given time interval.
\[
\int_{0}^{2\pi} v(t) \, dt =
\]

c) If \(s(0) = 3 \), what is the particle's final position?
\[
3 + \int_{0}^{2\pi} v(t) \, dt =
\]

d) Find the total distance traveled by the particle.
\[
\int_{0}^{2\pi} |v(t)| \, dt =
\]

10. The function \(v(t) = (t - 2) \sin t \) is the velocity in m/sec of a particle moving along the x-axis from \([0, 4]\). Use your calculator to answer the following.

a) Find the particle's displacement for the given time interval.
\[
\int_{0}^{4} (t-2)(\sin t) \, dt
\]

b) Find the total distance traveled by the particle.
\[
\int_{0}^{4} |v(t)| \, dt =
\]
A) The rate of potato consumption for a particular country was:
\[C(t) = 2.2 + 1.1^t \]
where \(t \) is the number of years since 1970 and \(C \) is in millions of bushels per year.
Determine the amount of potatoes consumed from the beginning of 1972 to the end of 1973.

\[\int_{2}^{3} |C(t)| = 3.469 \text{ million bushels} \]

B) The electrical power consumption (measured in kilowatts) at a factory \(t \) hours after midnight during a typical day is modeled by:
\[E(t) = 300(2 - \cos(\pi t / 12)) \]
How many kilowatt hours of electrical energy does the company consume in a typical day.

\[\int_{0}^{24} |E(t)| \, dt = \]