1. The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by

$$g(x) = \int_{-5}^{x} f(t) \, dt$$

A) Find $g(0)$ and $g'(0)$

B) Find all values of x in the open interval $(-5, 4)$ at which g attains a relative maximum. Justify your answer.

C) Find the absolute minimum value of g on the closed interval $[-5, 4]$. Justify.

D) Find all values of x in the open interval $(-5, 4)$ at which the graph of g has a point of inflection.
1997 AB4 p.115 (1st Fund Thm of Calc/Relative Extrema/Tangent Line/Inflection Pts)

No Calculator

11. The graph of a function f consists of a semicircle and two line segments as shown. Let g be the function given by $g(x) = \int_0^x f(t)\,dt$

a) Find $g(3)$

b) Find all values of x on the open interval $(-2, 5)$ at which g has a relative maximum. Justify your answer

c) Write an equation for the line tangent to the graph of g at $x = 3$

d) Find the x-coordinate of each point of inflection of the graph of g on the open interval $(-2, 5)$. Justify your answer.
The graph of a differentiable function \(f \) on the closed interval \([1, 7]\) is shown.

Let \(h(x) = \int_1^x f(t) \, dt \) for \(1 \leq x \leq 7 \).

a) Find \(h(1) \)

b) Find \(h'(4) \)

c) On what interval or intervals is the graph of \(h \) concave upward? Justify your answer.

d) Find the value of \(x \) at which \(h \) has its minimum on the closed interval \([1, 7]\). Justify your answer.