Find the equation for the tangent line at the given point

Q) \(y = \frac{x^5 + 2x}{x^2} \) at \(x = 1 \)

R) \(y = 5x^2 + 3 \) at \(x = 3 \)

S) Find an equation of the line perpendicular to the tangent to the curve \(y = 4x^3 - 6x + 2 \) at the point \((2, 22) \).

T) Find the points on the curve \(y = x^3 - 3x^2 - 9 \) where the tangent is parallel to the \(x \)-axis.
U) Suppose u and v are differentiable functions at $x = 2$ and $u(2) = 3$, $u'(2) = 3$, $v(2) = 1$, $v'(2) = 2$

i) Find $\frac{d}{dx}(uv)$

ii) Find $\frac{d}{dx}(\frac{u}{v})$

iii) Find $\frac{d}{dx}(3u - 2v + 2uv)$

V) Find the derivative of $y = x$ with respect to x

W) Find the derivative of $y = x$ with respect to t

X) Find the derivative of $y = x$ with respect to P
Flowchart: Selecting a Procedure for Derivatives

Step 1
Categorize the function.

- Is it a quotient? No
- Is it a product? No
- Is it a function within a function? No
- Is it a basic function? Yes

Can you change this function into another form? No

Revise the form to something easier.

Step 2
Differentiate using the rule that would apply in Step 1.
Find equations for the lines that are tangent and normal to the graph of \(y = 2\cos x \) at \(x = \frac{\pi}{4} \).

Find the points on the curve \(y = \cot x \), \(0 \leq x \leq \frac{\pi}{2} \), where the tangent line is parallel to the line \(y = -2x \).
1. Let \(f \) be a differentiable function such that
\[f(3) = 15, \quad f(6) = 3, \quad f'(3) = -8 \text{ and} \]
\[f'(6) = -2. \]
The function \(g \) is differentiable and
\[g(x) = f^{-1}(x) \text{ for all } x. \]
What is the value of \(g'(15) \)?

a) -1/2 b) -1/8 c) 1/6 d) 1/3 e) The value of \(g'(15) \) cannot be determined

2. Let \(f \) be a differentiable function such that
\[f(3) = 5, \quad f(8) = 4, \quad f'(3) = 6 \text{ and} \]
\[f'(8) = 3. \]
The function \(g \) is differentiable and
\[g(x) = f^{-1}(x) \text{ for all } x. \]
What is the value of \(g'(4) \)?

a) -1/2 b) -1/8 c) 1/6 d) 1/3 e) The value of \(g'(4) \) cannot be determined
3. Let \(f \) be a differentiable function such that \(f(3) = 5, f(8) = 4, f'(3) = 6 \) and \(f'(8) = 3 \).

The function \(g \) is differentiable and \(g(x) = f^{-1}(x) \) for all \(x \). What is the value of \(g'(5) \)?

a) -1/2 b) -1/8 c) 1/6 d) 1/3 e) The value of \(g'(5) \) cannot be determined

4. If \(f(2) = -3, f'(2) = \frac{4}{3} \), and \(g(x) = f^{-1}(x) \),

what is the equation of the tangent line to \(g(x) \) at \(x = -3 \)?

A) \(y-2 = -\frac{3}{4}(x + 3) \) B) \(y+2 = -\frac{3}{4}(x - 3) \)

C) \(y-2 = \frac{3}{4}(x + 3) \) D) \(y+3 = \frac{3}{4}(x - 2) \)

E) \(y-2 = \frac{4}{3}(x + 3) \)
5. If \(f(2) = -3, \) \(f'(2) = -\frac{4}{3}, \) and \(g(x) = f^{-1}(x), \)
what is the equation of the tangent line to \(g(x) \) at \(x = -3? \)

A) \(y - 2 = -\frac{3}{4}(x + 3) \)

B) \(y + 2 = -\frac{3}{4}(x - 3) \)

C) \(y - 2 = \frac{3}{4}(x + 3) \)

D) \(y + 2 = \frac{4}{3}(x - 3) \)

E) \(y - 2 = \frac{4}{3}(x + 3) \)

6. If \(f(2) = -3, \) \(f'(2) = -\frac{3}{4}, \) and \(g(x) = f^{-1}(x), \)
what is the equation of the tangent line to \(g(x) \) at \(x = -3? \)

A) \(y - 2 = -\frac{3}{4}(x + 3) \)

B) \(y + 3 = -\frac{4}{3}(x + 2) \)

C) \(y - 2 = \frac{3}{4}(x + 3) \)

D) \(y + 2 = \frac{4}{3}(x - 3) \)

E) \(y - 2 = -\frac{4}{3}(x + 3) \)
Graph the parametric function given

A) \[x = t^2 - 3 \quad y = t \quad t \geq 0 \]

B) Find the derivative of the function at \(t = 5 \)

C) Find the equation of the tangent line at \(t = 1 \)

\[x = 3t \quad y = 9t^2 \]

D) Find the equation of the tangent line at \(\theta = \frac{\pi}{4} \)

\[x = \cos \theta \quad y = \sin \theta \]

E) Find the equation of the tangent line at \(t = \pi \)

\[x = \sec^2(2t) - 1 \quad y = \tan(2t) \]
A curve C is defined by the parametric equations \(x = t^2 - 4t + 1 \) and \(y = t^3 \). Determine the equation of the line tangent to the graph of C at the point (1, 64)?

Determine the horizontal and vertical tangents for the parametric curve

\[\begin{align*}
A) & \quad x = 1 - t \quad y = t^2 - 4t \\
B) & \quad x = \cos \theta \quad y = 2\sin(2\theta)
\end{align*} \]
The derivative of \(e^x \) is: \((\text{Itself})(\text{Derivative of the power}) \)

\[
\frac{d}{dx} e^u = e^u \frac{du}{dx}
\]

The derivative of \(a^x \) is:
\((\text{Itself})(\ln \text{ of the base})(\text{Derivative of the power}) \)

\[
\frac{d}{dx} (a^u) = a^u \ln a \frac{du}{dx}
\]

The derivative of \(a^x \) is:
\((\text{Itself})(\ln \text{ of the base})(\text{Derivative of the power}) \)

\[
\frac{d}{dx} a^u = a^u \ln a \frac{du}{du}
\]

The derivative of \(\ln u \) is:
\((\text{one over what you are taking the } \ln \text{ of}) \text{ times now you should be in the numerator (Derivative of what you are taking the } \ln \text{ of}) \)

\[
\frac{d}{dx} \ln u = \frac{1}{u} \frac{du}{dx}
\]

- One over the square root of 1 – the ratio squared all times the derivative of the ratio.

\[
\frac{d}{dx} \sin^{-1} u = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}
\]

- Negative One over the square root of 1 – the ratio squared all times the derivative of the ratio.

\[
\frac{d}{dx} \cos^{-1} u = -\frac{1}{\sqrt{1-u^2}} \frac{du}{dx}
\]
\[
\frac{d}{dx} \tan^{-1} u = \frac{1}{1+u^2} \frac{du}{dx}
\]

- One over 1 + the ratio squared all times the derivative of the ratio.

\[
\frac{d}{dx} \cot^{-1} u = -\frac{1}{1+u^2} \frac{du}{dx}
\]

- Negative One over 1 + the ratio squared all times the derivative of the ratio.

\[
\frac{d}{dx} \sec^{-1} u = \frac{1}{|u|\sqrt{u^2-1}} \frac{du}{dx}
\]

- One over the absolute value of the ratio times the square root of the ratio squared minus 1 all times the derivative of the ratio.

\[
\frac{d}{dx} \csc^{-1} u = -\frac{1}{|u|\sqrt{u^2-1}} \frac{du}{dx}
\]

Negative One over the absolute value of the ratio times the square root of the ratio squared minus 1 all times the derivative of the ratio.
When you do the power rule the base does not change only the power
- Once you have done the power rule, you are done with the powers

When you do the derivative of a trig function the angle does not change

Chain Rule

- **Polynomial**
 - (Power Rule)(Derivative Base)
 \[y = (1 + x^2)^5 \]
 \[y' = 5(1 + x^2)^4 \cdot 2x \]

- **Trig Function**
 - (Power rule)(Derivative of base)(Derivative of angle)
 \[y = \sin^5 (3x) \]
 \[y' = 5 \sin^4 (3x) \cdot (\cos \beta x) \cdot 3 \]
Chain Rule

- Product and quotient rule over rule everything when you have 2 functions

\[y = x (\sin 3x)^{1/2} \]

\[y' = x \left[\frac{1}{2} (\sin 3x)^{-1/2} \cdot (\cos(3x)) \cdot 3 \right] + (\sin 3x) \]

- If the base is a product or quotient rule then you must start with the power rule

\[y = (x \sin 3x)^{1/2} \]

\[y' = \frac{1}{2} (x \sin 3x)^{-1/2} \cdot [x(\cos(3x)) \cdot 3] + (\sin 3x) \]