What you'll Learn About
- Continuity at a point
- Continuous Functions
- Intermediate Value Theorem for Continuous Functions

1a. Does \(f(-1) \) exist? \(\text{yes} \)
1b. Does \(\lim_{x \to -1} f(x) \) exist? \(\text{yes} \)
1c. Does \(\lim_{x \to -1} f(x) = f(-1) \)? \(\text{yes} \)
1d. Is \(f \) continuous at \(x = -1 \)? \(\text{yes} \)

2a. Does \(f(0) \) exist? \(\text{yes} \)
2b. Does \(\lim_{x \to 0} f(x) \) exist? \(\text{yes} \)
2b. Does \(\lim_{x \to 0^+} f(x) \) exist? \(\text{yes} \)
2c. Does \(\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) \neq f(0) \)? \(\text{NO} \)
2d. Is \(f \) continuous at \(x = 0 \)? \(\text{NO (Removable)} \)
A function is continuous at \(x = a \) if \(\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a) \)

3a. Does \(f(1) \) exist? \(\text{Yes} \) \(f(1) = 0 \)

3b. Does \(\lim_{x \to 1^-} f(x) \) exist? \(\text{Yes} \)

3c. Does \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1} f(x) = f(1) \)? \(\text{No} \) \(\text{Jump} \)

3d. Is \(f \) continuous at \(x = 1 \)? \(\text{No} \) \(\text{Jump} \)

4a. Does \(f(2) \) exist? \(\text{Yes} \)

4b. Does \(\lim_{x \to 2} f(x) \) exist? \(\text{Yes} \)

4c. Does \(\lim_{x \to 2} f(x) = f(2) \)? \(0 = 0 \) \(\text{Yes} \)

4d. Is \(f \) continuous at \(x = 2 \)? \(\text{Yes} \)

5. For what values is the function continuous \(x \neq 0, 1 \)

6a. Is it possible to extend \(f \) to be continuous at \(x = 0 \)? If so, what value should the extended function have? If not, why not? \(f(b) = 0 \)

6b. Is it possible to extend \(f \) to be continuous at \(x = 1 \)? If so, what value should the extended function have? If not, why not? \(\text{Not a Jump} \)
Determine the type of discontinuity

A) \(f(x) = \begin{cases}
3 + x & x < 2 \\
1 & x = 2 \\
\frac{x}{2} & x > 2
\end{cases} \)

Left \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \)

Right \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \)

Removable

\(x = 2 \)

\(5 \neq 1 = 1 \)

B) \(f(x) = \begin{cases}
\frac{1}{x - 2} & x < 2 \\
x^2 + 5x & x > 2
\end{cases} \)

\(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \)

\(\frac{x^2}{x - 2} \neq 1 \neq \text{DNE} \)

C) \(f(x) = \begin{cases}
9 - x^2 & x \neq 3 \\
5 & x = 3
\end{cases} \)

\(\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = f(3) \)

Removable

\(0 = 0 \neq 5 \)

D) \(f(x) = \begin{cases}
6 - x & x < 3 \\
2x - 3 & x > 3
\end{cases} \)

\(\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = f(3) \)

\(3 = 3 \neq \text{DNE} \)

Hole

Removable
Given the following information, sketch a graph of \(f(x) \)

A) \(f(x) \) exists, but \(\lim_{x \to 5} f(x) \) does not

\[\text{Jump} \]

B) \(f(5) \) exists

\[\lim_{x \to 5} f(x) \text{ exists} \]

\(f \) is not continuous at \(x = 5 \)

Find a value for \(a \) so that the function is continuous

47) \(f(x) = \begin{cases}
 x^2 - 1 & \text{if } x < 3 \\
 2ax & \text{if } x \geq 3
\end{cases} \)

At \(x = 3 \) both functions have to have the same \(y \)-value.

(Both functions = to each other)

\[\frac{x^2 - 1}{2ax} = \]

\[\frac{9 - 1}{6a} = \]

\[\frac{8}{6} = \]

\[\frac{4}{3} = a \]