The curve above is drawn in xy-plane and is described by the equation in polar coordinates
\[r = \theta + \sin(2\theta) \] for \(0 \leq \theta \leq \pi \), where \(r \) is measured in meters and \(\theta \) is measured in radians. The derivative of \(r \) with respect to \(\theta \) is given by
\[\frac{dr}{d\theta} = 1 + 2\cos(2\theta) \].

a. Find the slope of the curve at the point \(\theta = \frac{\pi}{2} \).

\[x = r \cos \theta = (\theta + \sin(2\theta)) \cos \theta \]
\[y = r \sin \theta = (\theta + \sin(2\theta)) \sin \theta \]
\[\frac{dy}{dx} = \frac{-1}{(\theta + \sin(2\theta)) \cos \theta} \]

b. Find the angle \(\theta \) that corresponds to the point on the curve with \(x \)-coordinate -2.

\[x = r \cos \theta = -2 \]
\[2 = (\theta + \sin(2\theta)) \cos \theta \]
\[\theta = 2.786 \]

c. For \(\frac{\pi}{2} < \theta \leq \frac{2\pi}{3} \), \(\frac{dr}{d\theta} \) is negative. What does this fact say about \(r \)? What does this fact say about the curve? Radii is getting smaller and \(r \) is closer to the origin.

d. Opp sign, \(\frac{dr}{d\theta} \) and \(r \) are opp signs.

\[e. \text{ Find the value of } \theta \text{ in the interval } 0 \leq \theta \leq \frac{\pi}{2} \text{ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.} \]

\[r = \theta + \sin(2\theta) \]
\[\frac{dr}{d\theta} = 1 + 2\cos(2\theta) \]
\[r(0) = 0 \]
\[r\left(\frac{\pi}{3}\right) = \frac{\pi}{3} + \sqrt{3} \]
\[\frac{\pi}{2} \text{ abs max} \]
\[r\left(\frac{\pi}{2}\right) = \frac{\pi}{2} \]
56. Inside the four-petaled rose \(r = 4 \cos 2\theta \) and outside the circle \(r = 2 \)

Determine the polar curves and shaded area represented by the integral given below.

\[
A = \frac{1}{2} \int_{\pi/6}^{5\pi/6} (2 \sin \theta)^2 \, d\theta - \frac{1}{2} \int_{\pi/6}^{5\pi/6} (1)^2 \, d\theta
\]