The graph of a function is given. Choose the answer that represents the graph of its derivative.

1) \(y = x^2 \)

- \(\frac{dy}{dx} \) is linear
- slope \(\frac{dy}{dx} \) < 0 from \((-\infty, 0)\) the graph of \(f(x) \)
- min/max on \(f \) should be on \(x \)-axis
- slope \(f'(x) \) > 0 the graph of \(f'(x) \) is above the \(x \)-axis
- \(y' \) should be linear
- \(y' \) is decreasing

A)

B)
$f' = \text{constant}$
Sketch the graphs of $f(x)$ and $f'(x)$ on the same coordinate plane as the given graph of $f(x)$.

- Max/min on $f(x)$
 - $x = -2, 0, 2$

- Domain and Range
 - $(-\infty, -2)$ decreasing below x-axis
 - $(-2, 0)$ increasing above x-axis
 - $(0, 2)$ decreasing below x-axis
 - $(2, \infty)$ increasing above x-axis

- X-intercepts