MaClaurin Series

For each Geometric function given do the following:
a. Write the first 4 terms
b. Write the rule for the series
c. Find the interval of convergence
d. Take the derivative of the function and series.
e. Take the antiderivative of the function and the series.

1. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{1-\mathrm{x}^{2}}$
2. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}^{3}}{1+\mathrm{x}^{4}}$

For each Geometric function given do the following:
a. Write the first 4 terms
b. Write the rule for the series
c. Find the interval of convergence
d. Take the derivative of the function and series.
e. Take the antiderivative of the series only as the functions antiderivative will be unkown.

1. $\mathrm{f}(\mathrm{x})=\frac{1}{1-\mathrm{x}^{3}}$
2. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}^{2}}{1+\mathrm{x}^{4}}$

For each function given do the following:
a. Write the first 4 terms
b. Write the rule for the series
c. Find the interval of convergence
d. Take the derivative of the function and series.
e. Take the antiderivative of the function and the series.

1. $\mathrm{f}(\mathrm{x})=\mathrm{x} \cos \left(\mathrm{x}^{2}\right)$
2. $\mathrm{f}(\mathrm{x})=x^{2} \sin \left(x^{3}\right)$

For each function given do the following:
a. Write the first 4 terms
b. Write the rule for the series
c. Find the interval of convergence
d. Take the derivative of the function and series.
e. Take the antiderivative of the series only as the functions antiderivative will be unkown.

1. $\mathrm{f}(\mathrm{x})=\cos \left(\mathrm{x}^{2}\right)$
2. $\mathrm{f}(\mathrm{x})=\sin \left(\mathrm{x}^{3}\right)$

For each function given do the following:
a. Write the first 4 terms
b. Write the rule for the series
c. Find the interval of convergence
d. Take the derivative of the function and series.
e. Take the antiderivative of the series only as the functions antiderivative will be unknown.

1. $\mathrm{f}(\mathrm{x})=\ln \left(1+\mathrm{x}^{3}\right)$
2. $f(x)=\ln \left(1-x^{2}\right)$

For each function given do the following:
a. Write the first 4 terms
b. Write the rule for the series
c. Find the interval of convergence
d. Take the derivative of the function and series.
e. Take the antiderivative of the function and the series.

1. $\mathrm{f}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}^{2}}$
2. $f(x)=x^{4} e^{x^{5}}$

For each function given do the following:
a. Write the first 4 terms
b. Write the rule for the series
c. Find the interval of convergence
d. Take the derivative of the function and series.
e. Take the antiderivative of the series only as the functions antiderivative will be unkown.

1. $f(x)=e^{x^{2}}$
2. $f(x)=x^{3} e^{x^{3}}$

For each function given do the following:
a. Write the first 4 terms
b. Write the rule for the series
c. Find the interval of convergence
d. Take the derivative of the function and series.
e. Take the antiderivative of the series only as the functions antiderivative will be unkown.

1. $\mathrm{f}(\mathrm{x})=\tan ^{-1}\left(x^{5}\right)$
2. $\mathrm{f}(\mathrm{x})=\mathrm{xtan}^{-1}\left(x^{2}\right)$
