## Page 34-36

 $f(x) = \frac{1}{x-3} \rightarrow P_3(x-3) = 1 - (x-3) + 2(x-3)$ Let  $f(x) = \frac{1}{x-2}$  at x = 3. a. Write the first 4 terms and the general term of the Taylor Series generated by

$$f(x) \text{ at } x = 3.$$

$$f(x) = (x-2)^{-1} \qquad f(3) = 1$$

$$f'(x) = -(x-2)^{-2} \qquad f''(3) = -1$$

$$f''(x) = 2(x-2)^{-3} \qquad f'''(5) = 2$$

$$f^{(1)}(x) = 2(x-2)^{-4} \qquad f'''(3) = -6$$

Use the result in part (a) to find the fourth order polynomial and the general term of the series generated by  $\ln |x-2|$  at x=3.

$$\int f(x) = (x-3)^{2} - \frac{1}{2}(x-3)^{2} + \frac{1}{3}(x-3)^{3} - \frac{1}{4}(x-3)^{4}$$

$$X = -5 - \frac{1}{2}(-25)^{2} + \frac{1}{3}(-25)^{3} - \frac{1}{4}(25)^{4}$$

$$\int f(x) = (x-3)^{2} - \frac{1}{2}(x-3)^{2} + \frac{1}{3}(-25)^{3} - \frac{1}{4}(x-3)^{4}$$

$$\int f(x) = (x-3)^{2} - \frac{1}{2}(x-3)^{2} + \frac{1}{3}(x-3)^{3} - \frac{1}{4}(x-3)^{4}$$

$$\int f(x) = (x-3)^{2} - \frac{1}{2}(x-3)^{2} + \frac{1}{3}(x-3)^{3} - \frac{1}{4}(x-3)^{4}$$

$$\int f(x) = (x-3)^{2} - \frac{1}{2}(x-3)^{2} + \frac{1}{3}(x-3)^{3} - \frac{1}{4}(x-3)^{4}$$

$$\int f(x) = (x-3)^{2} - \frac{1}{2}(x-3)^{2} + \frac{1}{3}(x-3)^{3} - \frac{1}{4}(x-3)^{4}$$

GLLOL bound

Use the series in part (b) to compute a number that differs from ln(1.5) by less than 0.05. Justify your answer.

Next term = 
$$\frac{1}{5}(x-3)^5$$
 error bound  $=\frac{1}{5}(x-3)^5$ 

The Taylor Series for lnx, centered at x = 1, is  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (x-1)^n}{n}$ the function given by the sum of the first three nonzero terms of this series. The maximum value of  $|\ln x - f(x)|$  for  $.3 \le x \le 1.7$  is

- (A) .030
- (B) .039
- (C) .145
- (D) .153
- (E) .529

## 2011 BC6

Let  $f(x) = \sin(x^2) + \cos x$ .

- a. Write the first four nonzero terms of the Taylor series for sinx about x = 0, and write the first four nonzero terms of the Taylor series for  $sin(x^2)$  about x = 0.
- b. Write the first four nonzero terms of the Taylor series for  $\cos x$  about x = 0. Use this series and the series for  $\sin(x^2)$ , found in part a, to write the first four nonzero terms of the Taylor series for f(x) about x = 0.

terms of the Taylor series for 
$$f(x)$$
 about  $x = 0$ .

$$f(x) = \sin(x^2) + \cos x$$

$$f(x) = x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \frac{x^{14}}{7!} + \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}\right)$$

$$= 1 + \left(x^2 - \frac{x^2}{2!}\right) + \frac{x^4}{4!} + \left(-\frac{x}{3!} - \frac{x^6}{6!}\right)$$
c. Find the value of  $f^{(6)}(0)$ .

6+ desivation

$$\frac{f^{6}(0) x^{6}}{6!} = \frac{-121 x^{6}}{6!}$$

Culturant

d. Let  $f(x) = \sin(x^2) + \cos x$ . The graph of  $y = |f^{(5)}(x)|$  is shown.



Let P<sub>4</sub>(x) be the fourth degree Taylor polynomial for f about x = 0. Using information from the graph of  $y = |f^{(5)}(x)|$ , shown above, show that

$$\left| P_4 \left( \frac{1}{4} \right) - f \left( \frac{1}{4} \right) < \frac{1}{3000}$$

2004 BC6

Let f be the function given by  $f(x) = \sin\left(5x + \frac{\pi}{4}\right)$ , and let P(x) be the third-degree Taylor polynomial for f about x = 0.

a) Find P(x).

b) Find the coefficient of  $x^{22}$  in the Taylor series about x = 0.

c) Use the Lagrange error bound to show that  $\left| f\left(\frac{1}{10}\right) - P\left(\frac{1}{10}\right) \right| < \frac{1}{100}$ .

d) Let G be the function given  $G(x) = \int_0^x f(t)dt$ . Write the third-degree Taylor polynomial for G about x = 0.

| $f(x) = \sum_{n=0}^{\infty} c_n x^n$                                                                                             | INTERVAL OF CONVERGENCE | RADIUS OF<br>CONVERGENCE |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|
| $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$                                                           | (-1,1)                  | 1                        |
| $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$                                    | $(-\infty,\infty)$      | oo.                      |
| $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ $= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ | $(-\infty,\infty)$      | ∞                        |
| $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ $= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$     | $(-\infty,\infty)$      | ∞                        |
| $\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ $= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$  | (-1, 1]                 | 1                        |
| $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ $= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$         | (-1, 1]                 | 1                        |