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a, e first 4 terms and the general term of the Taylor Series generated by
fix)at x=3. |
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b. Use the result in part (g)-#fnd the fourth order polynomial and the general
term of the series generated b' x=3
Y
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C; Use the series in part (b) to compute a number that differs fruy less
than 0.05, Justify your answer.
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33. The Taylor Series for Inx, centered at x = 1, is ZM . Let fbe
=] n
the function given by the sum of the first three nonzero terms of this series. The
maximum value of [lnx— f(x) | for 3<x<1.7is

(A) 030 (B) .039 (C) .145 (D) .153 (E) .529
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Let f(x)= sin(x‘")+ COSY.

a. Write the first four nonzero terms of the Taylor series for sinx about x = 0, and
write the first four nonzero terms of the Taylor series for sin(x*) about x = 0.

b. Write the first four nonzero terms of the Taylor series for cosx about x = (). Use
this series and the series for sin(x?), found in part a, to write the first four nonzero
terms of the Taylor series for f{x) about x = 0. -
L£6) = sialxd) + cosx
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¢. Find the value of *%(0). - b
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d. Let f(x)=s he graph of y=|/"(x) is shown.
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Let Ps(x) be the fourth degree Taylor polynomial for fabout x = (0. Using
information from the graph of y= l)“sj(:f }J, shown above, show that
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Let f'be the function given by f(x)= sin(i\-+§ ) and let P(x) be the third-degree

Taylor polynomial for f about x = 0.

a)

b)

)

d)

Find P(x).

Find the coefficient of x™ in the Taylor series about x = (.

Use the Lagrange error bound to show that

okl l<we

Let G be the function given G(x)= .[u S(Ndt. Write the third-degree Taylor
polynomial for G about x = 0.
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