2015 BC6

 The Maclaurin series for a function f is given by $\mathcal{L}(x) = \sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^n = x - \frac{3}{2} x^2 + 3x^3 - \dots + \frac{(-3)^{n-1}}{n} x^n \dots \text{ and converges to } f(x) \text{ for } x = x - \frac{3}{2} x^2 + 3x^3 - \dots + \frac{(-3)^{n-1}}{n} x^n \dots \text{ and } \frac{(-3)^{n-1}}{n} x^n + \dots \text{ and } \frac{(-3)^{n-$

|x| < R, where R is the radius of convergence of the Maclaurin series.

lim
$$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000}$$

b) Write the first four non-zero terms of the Maclaurin series for f', the derivative of f. Express f' as a rational function for |x| < R.

$$f(x) = 1 - 3x + 9x^2 - 27x^3$$

$$5vm = \frac{1}{1 - (-3x)}$$

c) Write the first four nonzero terms of the Maclaurin series for ex. Use the Maclaurin series for e^x to write the third-degree polynomial for g(x) = $e^{x}f(x)$ about x = 0.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$$

$$= (1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + \frac{x^{3}}{3!})(x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

$$= (x - \frac{3}{2}x^{2} + 3x^{3} ...)$$

p. 527 #60

Let $f(x) = \frac{1}{x-2}$ at x = 3.

a. Write the first 4 terms and the general term of the Taylor Series generated by f(x) at x = 3.

b. Use the result in part (a) to find the fourth order polynomial and the general term of the series generated by $\ln|x-2|$ at x=3.

 Use the series in part (b) to compute a number that differs from ln(1.5) by less than 0.05. Justify your answer.

actual difference

between

Inx and the polynomial 83. The Taylor Series for lnx, centered at x = 1, is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^n}{n}$. Let f be the function given by the sum of the first three nonzero terms of this series. The maximum value of $\ln x - f(x)$ for $.3 \le x \le 1.7$ is

- (A) .030
- (B) .039
- (C) .145
- (D) .153
- (E) .529

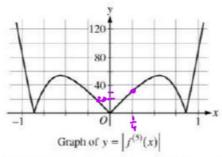
$$P_3(x-1) = (x-1) - (x-1)^2 + (x-1)^3$$

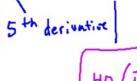
2011 BC6

Let $f(x) = \sin(x^2) + \cos x$.

- a. Write the first four nonzero terms of the Taylor series for sinx about x = 0, and write the first four nonzero terms of the Taylor series for $sin(x^2)$ about x = 0.
- b. Write the first four nonzero terms of the Taylor series for $\cos x$ about x = 0. Use this series and the series for $\sin(x^2)$, found in part a, to write the first four nonzero terms of the Taylor series for f(x) about x = 0.
- c. Find the value of f⁽⁶⁾(0).

d. Let $f(x) = \sin(x^2) + \cos x$. The graph of $y = |f^{(5)}(x)|$ is shown.





40 (4)°

Let P₄(x) be the fourth degree Taylor polynomial for f about x = 0. Using information from the graph of $y = |f^{(5)}(x)|$, shown above, show that

$$\left| P_{\scriptscriptstyle d} \left(\frac{1}{4} \right) - f \left(\frac{1}{4} \right) < \frac{1}{3000}.$$

Build next term at

+5(1)x5

(£5(f) x5)

2004 BC6

Let f be the function given by $f(x) = \sin\left(5x + \frac{\pi}{4}\right)$, and let P(x) be the third-degree Taylor polynomial for f about x = 0.

a) Find P(x).

b) Find the coefficient of x^{22} in the Taylor series about x = 0.

c) Use the Lagrange error bound to show that $\left| f\left(\frac{1}{10}\right) - P\left(\frac{1}{10}\right) \right| < \frac{1}{100}$.

d) Let G be the function given $G(x) = \int_0^x f(t)dt$. Write the third-degree Taylor polynomial for G about x = 0.

$f(x) = \sum_{n=0}^{\infty} c_n x^n$	INTERVAL OF CONVERGENCE	RADIUS OF CONVERGENCE
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	(-1,1)	1
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	$(-\infty,\infty)$	oo.
$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ $= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$(-\infty,\infty)$	∞
$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ $= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$(-\infty,\infty)$	∞
$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ $= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	(-1, 1]	1
$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ $= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	(-1, 1]	1