CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy

 Chapter 9: MaClaurin SeriesWhat you'll Learn About
How to write terms given a power series
How to take the derivative and anti-derivative of a power series Identifying important types of power series

1. Given the series $\sum_{n=0}^{\infty} x^{n}$ answer the following questions.
a. List the first 6 terms of the series and the general term
$\sum_{n=0}^{\infty} x^{n}=$
b. Determine the Interval of Convergence of the series.
c. Determine the function (sum) of the series $(f(x)=)$
d. Enter the first 6 terms into y_{1} and the function (sum) into y_{2} of your calculator.
e. Set the x-values of your window to match your interval of convergence and the y values from $[0,10]$. What do you notice about the 2 graphs?
f. What would happen to the graphs if the first 10 terms of the series are entered into y_{1}.
i. Take the derivative of $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots x^{n}=\frac{1}{1-x}$
j. Take the anti- derivative of $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots x^{n}=\frac{1}{1-x}$

CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 9: MaClaurin Series

What you'll Learn About
Taking derivatives and anti-derivatives of a power series

1. Find the first 4 terms of the series
2. Write the rule for the series
3. Find the interval of convergence 4. Take the derivative of the function and series
4. Take the antiderivative of the function and the series

Geometric Series

1) $f(x)=\frac{1}{1+x^{3}}$
2) $f(x)=\frac{x^{3}}{1-x^{2}}$
1. Find the first 4 terms of the series
2. Write the rule for the series
3. Find the interval of convergence 4. Take the derivative of the function and series
4. Take the antiderivative of the function and the series
3) $f(x)=\sin \left(x^{2}\right)$
4) $\mathrm{f}(\mathrm{x})=x^{2} \cos \left(x^{3}\right)$
1. Find the first 4 terms of the series
2. Write the rule for the series
3. Find the interval of convergence
4. Take the
derivative of the
function and series
5. Take the antiderivative of the function and the series
5) $\mathrm{f}(\mathrm{x})=x^{2} e^{x^{3}}$
6) $f(x)=x e^{x^{4}}$

1. Find the first 4 terms of the series 2. Write the rule for the series 3. Find the interval of convergence 4. Take the 4erivative of the der function and series 5. Take the anti- derivative of the function and the series	
	$8(x)=\ln \left(1-x^{5}\right)$

| A) $\sum_{\mathrm{n}=0}^{\text {Determine which value the series converges to. (Determine the value of }}$the series/Determine the sum of the series)
 B) $\sum_{\mathrm{n}=0}^{\infty} \frac{5^{n}}{n!}$ | |
| :--- | :--- | :--- |
| C) $\sum_{\mathrm{n}=0}^{\infty} \frac{(-1)^{n}\left(\frac{\pi}{4}\right)^{2 n+1}}{(2 n+1)!}$ D) $\sum_{\mathrm{n}=0}^{\infty} \frac{(-1)^{n}\left(\frac{1}{2}\right)^{2 n+1}}{2 n+1}$ | |
| | |

CALCULUS: Graphical,Numerical,Algebraic by Finney, Demana, Watts and Kennedy Chapter 9: Taylor Series

What you'll Learn About
How to build a polynomial using derivatives

Given the values of the following, construct the $6^{\text {th }}$ degree Taylor Polynomial centered at $\mathrm{x}=0$

$$
\begin{aligned}
& P(0)=7 \\
& \mathrm{P}^{\prime}(0)=3 \\
& \mathrm{P}^{\prime \prime}(0)=9 \\
& \mathrm{P}^{\prime \prime \prime}(0)=15 \\
& \mathrm{P}^{4}(0)=6 \\
& \mathrm{P}^{5}(0)=4 \\
& \mathrm{P}^{6}(0)=12
\end{aligned}
$$

$$
P(x)=a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}+g x^{6}
$$

What would be the next 2 terms if $\mathrm{P}^{7}(0)=22$ and $\mathrm{P}^{8}(0)=50$?

$19 \mid \mathrm{Page}$

	Sometimes if your center is not at zero, you do not need to build the polynomial. You can use the MacLaurin series and Substitution. Construct the polynomial for $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}-1}$ centered at $\mathrm{x}=1$ using derivatives.
Construct the polynomial for $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}-1}$ centered at $\mathrm{x}=1$ using a	
MacLaurin series.	

CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 9: Error and Series

What you'll Learn About
How to find the error for a series that alternates

1. Give the first term of the series for $f(x)=\arctan (x)$ centered at $x=0$
2. Find the approximation for $\mathrm{P}(.1)$
3. Find the $f(.1)$
4. How accurate is the approximation.
5. What is the value of the next term of the polynomial at $x=.1$
6. Give the first 2 terms of the series for $f(x)=\arctan (x)$ centered at $x=0$
7. Find the approximation for $P(.1)$
8. Find the f(.1)
9. How accurate is the approximation.
10. What is the value of the next term of the polynomial at $x=.1$
11. Give the first 3 terms of the series for $f(x)=\arctan (x)$ centered at $x=0$
12. Find the approximation for $\mathrm{P}(.1)$
13. Find the $f(.1)$
14. How accurate is the approximation.
15. What is the value of the next term of the polynomial at $x=.1$

	1. $f(x)=\frac{1}{x}$ centered at $\mathrm{x}=2$ a. Given the function, find the fourth order polynomial
	b. Use the alternate estimation theorem to find a formula for the error bound $\|f(x)-P(x)\| \leq R$

CALCULUS: Graphical,Numerical,Algebraic by Finney, Demana, Watts and Kennedy

 Chapter 9: Error and Series 9.3:What you'll Learn About
How to find the error of a series that does not alternate

Lagrange Error Bound/Taylors Inequality/Remainder Estimation Theorem

1. Give the first term of the series for $f(x)=e^{x}$ centered at $x=0$
2. Find the approximation for $\mathrm{P}(.1)$
3. Find $\mathrm{f}(.1)$
4. How accurate is the approximation.
5. What is the value of the next term of the polynomial at $x=.1$
6. Give the first two terms of the series for $f(x)=e^{x}$ centered at $x=0$
7. Find the approximation for P(.1)
8. Find $f(.1)$
9. How accurate is the approximation.
10. What is the value of the next term of the polynomial at $x=.1$
11. Give the first three terms of the series for $f(x)=e^{x}$ centered at $x=0$
12. Find the approximation for $\mathrm{P}(.1)$
13. Find $\mathrm{f}(.1)$
14. How accurate is the approximation.
15. What is the value of the next term of the polynomial at $x=.1$

$\left.\begin{array}{c} \qquad\|f(x)-P(x)\| \leq R \\ \text { Where } \\ R= \\ \left(\begin{array}{l} \text { Maxof the } \\ \text { next derivative } \\ \text { on thegiven } \\ \text { interval } \end{array}\right. \end{array}\right)\left((x-c)^{n+1} \mid\right.$	1. Give the first 4 terms of the series for $f(x)=e^{x}$ centered at $x=0$ 2. Use Taylors Inequality to determine the error bound $\|f(x)-P(x)\| \leq R$
Where \mathbf{x} - \mathbf{c} is the distance from the center Where \mathbf{n} is the order	1. Find the $3^{\text {rd }}$ order polynomial of the series for $f(x)=\frac{1}{(1-x)^{2}}$ centered at $x=0$
We must build the next term a little bit bigger to have a good boundary for the error.	
Remember, whenever you see this, $\|f(x)-P(x)\| \leq R$, you are finding error bound whenever you see this, $\|f(x)-P(x)\|$, you are finding the actual error between the function and the approximation from the polynomial	2. Find the Lagrange error bound $\|f(x)-P(x)\| \leq R$ for the series between $0 \leq x \leq .2$

$\left.\begin{array}{|c|l|l|l|}\hline \text { 4) Write the 2nd order Taylor Polynomial for } f(x)=\operatorname{cosx} \text { at } x=\frac{\pi}{4} \\ \text { Then use Taylors Inequality to determine the error bound at } x=42^{\circ}\end{array}\right]$

| Summary of Error Bound |
| :--- | :--- |
| For an Alternating Series - Use the next term |
| For a series that is Not Alternating |
| 1. Write down the formula for the next derivative. |
| 2. Find the value of the next derivative at the ends of the interval and the |
| center. |
| $3 .$Whichever value is bigger is the value you use to build your error
 bound term |

29|P a g e

CALCULUS: Graphical,Numerical,Algebraic by Finney, Demana, Watts and Kennedy Chapter 9: Review of Series

$\left.\begin{array}{|l|lll|}\hline \text { p. } 492 \text { \#24 } \\ \text { The Maclaurin Series for } \mathrm{f}(\mathrm{x}) \text { is } f(x)=1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\cdots \frac{x^{n}}{(n+1)!} . \\ \text { a. } \quad \text { Find } f^{\prime}(0) \text { and } f^{10}(0) .\end{array}\right]$

| Let $f(x)=\sin \left(x^{2}\right)+\cos x$. |
| :--- | :--- |
| |
| a. Write the first four nonzero terms of the Taylor series for sinx about $\mathrm{x}=0$, and |
| write the first four nonzero terms of the Taylor series for $\sin \left(\mathrm{x}^{2}\right)$ about $\mathrm{x}=0$. |

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& \begin{aligned}
\sin x= & \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
= & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos x= & \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\
= & 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\tan { }^{-1} x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n} \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
\end{aligned}
\end{aligned}
$$

INTERVAL OF	RADIUS OF
CONVERGENCE	CONVERGENCE

$(-1,1)$
$(-\infty, \infty)$
$(-\infty, \infty)$
∞
$(-\infty, \infty)$
∞
$(-1,1]$
$(-1,1]$
1

