CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 9: Error and Series

What you'll Learn About How to find the error for a series that alternates Give the first term of the series for $f(x) = \arctan(x)$ centered at x = 0Find the approximation for P(.1) =Find (1) = arctan(1) = .0996686525 How accurate is the approximation. 0003313475

What is the value of the next term of the polymer. $\frac{\chi^2}{2} = -.1^3 = -.0003333333$ Give the first 2 terms of the series for $f(x) = \arctan(x)$ centered at x = 0Find the approximation for P(.1) = 099666666 $\times - \times^3$ Find the f(.1) = .0996686525 How accurate is the approximation. . DOODD | 9858 What is the value of the next term of the polynomial at x = .1-3 · 15 = (.000002 Give the first 3 terms of the series for $f(x) = \arctan(x)$ centered at Find the approximation for P(.1) = .099668667Find the f(.1) = .09 96606525 How accurate is the approximation. .0000000 14175505 What is the value of the next term of the polynomial at x = .1

- -1 = -.0000000 142857143

1. Give the first 4 terms of the series for
$$f(x) = \arctan(x)$$
 centered at $x = 0$

$$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7}$$

$$|f(x)-P(x)| \le R$$

Actual $\le |E|$

Difference

Prior bound

Prior bound

1. Give the first 4 terms of the series for
$$f(x) = \sin(x)$$
 centered at $x = \frac{\pi}{2}$

$$f_{(x)} = -2ivx$$
 $f_{(x)} = -1$
 $f_{(x)} = -2ivx$ $f_{(x)} = -1$
 $f_{(x)} = -2ivx$ $f_{(x)} = 0$
 $f_{(x)} = -2ivx$ $f_{(x)} = 0$

2. Use the alternate estimation theorem to determine the error bound at
$$x = 1.6$$

$$P_{6}(x-\frac{\pi}{2}) = 1 - \frac{|(x-2)^{2}|}{2!} + \frac{|(x-\frac{\pi}{2})^{4}|}{4!} - \frac{|(x-\frac{\pi}{2})^{4}|}{6!}$$

$$nex + term = \frac{(x-\frac{\pi}{2})^{8}}{8!}$$

23|Page
$$error bound = (1.6 - \frac{11}{2})$$

1.
$$f(x) = \frac{1}{x} \text{ centered at } x = 2$$
a. Given the function, find the fourth order polynomial
$$f(x) = \frac{1}{x} = x^{-1} \qquad f(x) = \frac{1}{12}, \qquad f^{H}(x) = J^{H}x^{-5} = \frac{J^{H}}{x^{5}}$$

$$f'(x) = -x^{-2} = -\frac{1}{x^{2}}, \qquad f^{-1}(2) = -\frac{1}{14}, \qquad f^{H}(x) = J^{H}x^{-5} = \frac{J^{H}}{x^{5}}$$

$$f''(x) = 2x^{-3} = 2/x^{3} \qquad f^{-1}(2) = -\frac{1}{14}, \qquad f^{-1}(2) = \frac{J^{H}}{x^{5}}$$

$$f^{-1}(x) = -\frac{J^{H}}{x^{5}}, \qquad f^{-1}(x) = -\frac{J^{H}}{x^{5}}, \qquad f^{-1}(x) = \frac{J^{H}}{x^{5}}, \qquad f^{-1}(x) = \frac{J^{H}}{x^{5}$$

Summary of Error Bound

For an Alternating Series - Use the next term

For a series that is Not Alternating

- 1. Write down the formula for the next derivative.
- 2. Find the value of the next derivative at the ends of the interval and the center.
- 3. Whichever value is bigger is the value you use to build your error bound term