Find the volume of the described solids. Set-up the integrals and then use your calculator to find the volume.

1) The solid lies between planes perpendicular to the x - axis at $x=-2$ and $x=2$. The cross sections perpendicular to the x-axis are circular disks whose diameters run from the parabola $y=x^{2}$ to the parabola $y=8-x^{2}$.
2) The base of a solid is bounded by $y=x^{3}, y=0$, and $x=3$. Find the volume if the cross- sections taken perpendicular to the y-axis are squares.
3) The base of a solid is the region between the curve $y=5 \cos x$ and the x - axis from $x=0$ to $x=\pi / 2$. The cross sections perpendicular to the \mathbf{x}-axis are isosceles right triangles with one leg on the base of the solid.
