## Using Riemann Sums

1. Use the data below and 4 sub-intervals to approximate the area under the curve using Right Riemann Sums, Left Riemann Sums, and the Trapezoid Rule.

| $t$ | 0 | 2 | 5 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $H(t)$ | 66 | 60 | 52 | 44 | 43 |

2. Use the data below and 4 sub-intervals to approximate the area under the curve using the Trapezoid Rule.

| t (hours) | 0 | 2 | 5 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{E}(\mathrm{t})$ <br> (hundreds of <br> entries) | 0 | 4 | 13 | 21 | 23 |

3. Let f be a function that is twice differentiable for all real numbers. The table gives values of $f$ for selected points in the closed interval $2 \leq x \leq 13$.

| $x$ | 2 | 3 | 5 | 8 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 1 | 4 | -2 | 3 | 6 |

Use a left Riemann sum with 4 subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x) d x$. Show the work that leads to your answer.
4. Use the data below to approximate the area under the curve using Midpoint Riemann Sums with 3 sub-intervals and the Trapezoid Rule with 6 sub-intervals.

| T | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}(\mathrm{t})$ | 0 | 46 | 53 | 57 | 60 | 62 | 63 |

5. Use the data below to approximate the area under the curve using Right Riemann Sums and Left Riemann Sums with 5 sub-intervals.

| T | 0 | 8 | 20 | 25 | 32 | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}(\mathrm{t})$ | 3 | 5 | -10 | -8 | -4 | 7 |

6. Use the data below to approximate the area under the curve using the Trapezoid Rule and 5 sub-intervals.

| T | 0 | 2 | 5 | 7 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}(\mathrm{t})$ | 5.7 | 4 | 2 | 1.2 | .6 | .5 |

7. Use the data below to approximate the area under the curve using Midpoint Riemann Sums with 4 sub-intervals and the Trapezoid Rule with 8 sub-intervals.

| t | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}(\mathrm{t})$ | 5 | 14 | 22 | 29 | 35 | 40 | 44 | 47 | 49 |

8. Use the data below to approximate the area under the curve using Right Riemann Sums and Left Riemann Sums with 4 sub-intervals,

| T | 0 | 1 | 5 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}(\mathrm{t})$ | 100 | 93 | 70 | 62 | 55 |

9. Use the data below to find the distance the car traveled from 30 seconds to 60 seconds using the Trapezoid Rule with 3 sub-intervals.

| $\mathrm{T}(\mathrm{sec})$ | 0 | 15 | 25 | 30 | 35 | 50 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}(\mathrm{t})$ <br> $\mathrm{ft} / \mathrm{sec}$ | -20 | -30 | -20 | -14 | -10 | 0 | 10 |

10. Use the data below to find the cars change in velocity from 0 seconds to 30 seconds using the Trapezoid Rule with 3 sub-intervals.

| $\mathrm{T}(\mathrm{sec})$ | 0 | 15 | 25 | 30 | 35 | 50 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{a}(\mathrm{t})$ <br> $\mathrm{ft} / \mathrm{sec}^{2}$ | 1 | 5 | 2 | 1 | 2 | 4 | 2 |

11. Use the data below to approximate the area under the curve using Midpoint Riemann Sums with 2 sub-intervals and the Trapezoid Rule with 4 sub-intervals.

| T | 0 | 3 | 6 | 9 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~W}(\mathrm{t})$ | 20 | 31 | 28 | 24 | 22 |

12. Use the data below to approximate the area under the curve using Right Riemann Sums and Left Riemann Sums with 5 sub-intervals.

| $T$ | 0 | 30 | 40 | 50 | 70 | 90 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $R(t)$ | 20 | 30 | 40 | 55 | 65 | 70 |

13. Use the data below to approximate the area under the curve using a midpoint Riemann sum with 3 sub-intervals

| $\mathrm{T}(\mathrm{sec})$ | 0 | 60 | 120 | 180 | 240 | 300 | 360 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{a}(\mathrm{t})$ <br> $\mathrm{ft} / \mathrm{sec}^{2}$ | 24 | 30 | 28 | 30 | 26 | 24 | 26 |

14. Use the data below to approximate the area under the curve using a Midpoint Riemann Sums with 4 sub-intervals and the trapezoid rule with 8 sub-intervals.

| t | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}(\mathrm{t})$ | 7 | 9.2 | 9.5 | 7 | 4.5 | 2.4 | 2.4 | 4.3 | 7.3 |

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $\mathrm{t}, 0 \leq t \leq 6$, is given by a differentiable function C , where t is measured in minutes. Selected values of $\mathrm{C}(\mathrm{t})$, measured in ounces, are given in the table.

| t (minutes) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(\mathrm{t})$ <br> ounces | 0 | 5.3 | 8.8 | 11.2 | 12.8 | 13.8 | 14.5 |

Use a midpoint sum with three subinterval of equal length indicated by the data in the table to approximate the value of $\int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\int_{0}^{6} C(t) d t$ in the context of the problem.

