1.

The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by

$$
g(x)=\int_{-5}^{x} f(t) d t
$$

A) Find $g(0)$ and $g^{\prime}(0)$
B) Find all values of x in the open interval $(-5,4)$ at which g attains a relative maximum. Justify your answer.
C) Find the absolute minimum value of g on the closed interval $[-5,4]$. Justify.
D) Find all values of x in the open interval $(-5,4)$ at which the graph of g has a point of inflection.

No Calculator

11. The graph of a function f consists of a semicircle and two line segments as shown. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$

a) Find $g(3)$
b) Find all values of x on the open interval $(-2,5)$ at which g has a relative maximum. Justify your answer
c) Write an equation for the line tangent to the graph of g at $x=3$
d) Find the x-coordinate of each point of inflection of the graph of g on the open interval ($-2,5$). Justify your answer.

Topics (First Fundamental Theorem of Calculus/Concavity/Minimum Value of Function)

Free Response 1995 AB6 (page 96)

No Calculator

12. The graph of a differentiable function f on the closed interval $[1,7]$ is shown.

Let $h(x)=\int_{1}^{x} f(t)$ dt for $1 \leq \mathrm{x} \leq 7$.

a) Find $\mathrm{h}(1)$
b) Find $h^{\prime}(4)$
c) On what interval or intervals is the graph of h concave upward? Justify your answer.
d) Find the value of x at which h has its minimum on the closed interval [1,7]. Justify your answer.

