CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. 116-126 What you'll Learn About How to find the derivative of: Functions with positive and negative integer powers Functions with products and quotients Find the equation for the tangent line at the given point Q) $y = \frac{x^5 + 2x}{x^2}$ at x = 1R) $y = 5x^2 + 3$ at x = 3S) Find an equation of the line perpendicular to the tangent to the curve $y = 4x^3 - 6x + 2$ at the point (2, 22). T) Find the points on the curve $y = x^3 - 3x^2 - 9$ where the tangent is parallel to the x-axis

U) Suppose u and v are differentiable functions at x = 2 and
u(2) = 3, u'(2) = 3, v(2)=1, v'(2) = 2
i) Find
$$\frac{d}{dx}(u_1)$$

ii) Find $\frac{d}{dx}(\frac{u}{v})$
iii) Find $\frac{d}{dx}(3u - 2v + 2uv)$
V) Find the derivative of y = x with respect to x
W) Find the derivative of y = x with respect to t
X) Find the derivative of y = x with respect to P

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy

Chapter 3: Derivatives 3.8: Derivatives of Inverse Trig Functions pg.165-171	
What you'll Learn About How to find the derivative of inverse functions	
	1. Let f be a differentiable function such that $f(3) = 15$, $f(6) = 3$, $f'(3) = -8$ and $f'(6) = -2$. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of $g'(15)$?
	a) $-1/2$ b) $-1/8$ c) $1/6$ d) $1/3$
	e) The value of $q'(15)$ cannot be determined
	 Let f be a differentiable function such that f(3) = 5, f(8) = 4, f'(3) = 6 and f'(8) = 3. The function g is differentiable and g(x) = f¹(x) for all x. What is the value of g'(4)?
	a) $-1/2$ b) $-1/8$ c) $1/6$ d) $1/3$ e) The value of $g'(4)$ cannot be determined

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.8: Derivatives of Inverse Trig Functions pg.165-171

3. Let f be a differentiable function such that

$$f(3) = 5$$
, $f(8) = 4$, $f'(3) = 6$ and
 $f'(8) = 3$.
The function g is differentiable and
 $g(x) = f^{-1}(x)$ for all x. What is the value
of $g'(5)$?
a) $-1/2$ b) $-1/8$ c) $1/6$ d) $1/3$
e) The value of $g'(5)$ cannot be determined
4. If $f(2) = -3$, $f'(2) = \frac{4}{3}$, and $g(x) = f^{-1}(x)$,
what is the equation of the tangent line to $g(x)$
at $x = -3$?
A) $y-2 = \frac{-3}{4}(x+3)$ B) $y+2 = \frac{-3}{4}(x-3)$
C) $y-2 = \frac{3}{4}(x+3)$ D) $y+3 = \frac{3}{4}(x-2)$
E) $y-2 = \frac{4}{3}(x+3)$

5. If
$$f(2) = -3$$
, $f'(2) = \frac{-4}{3}$, and $g(x) = f^{-1}(x)$,
what is the equation of the tangent line to $g(x)$
at $x = -3$?
A) $y-2 = \frac{-3}{4}(x+3)$ B) $y+2 = \frac{-3}{4}(x-3)$
C) $y-2 = \frac{3}{4}(x+3)$ D) $y+2 = \frac{4}{3}(x-3)$
E) $y-2 = \frac{4}{3}(x+3)$
6. If $f(2) = -3$, $f'(2) = \frac{-3}{4}$, and $g(x) = f^{-1}(x)$,
what is the equation of the tangent line to $g(x)$
at $x = -3$?
A) $y-2 = \frac{-3}{4}(x+3)$ B) $y+3 = \frac{-4}{3}(x+2)$
C) $y-2 = \frac{3}{4}(x+3)$ D) $y+2 = \frac{4}{3}(x-3)$
E) $y-2 = \frac{4}{3}(x+3)$ D) $y+2 = \frac{4}{3}(x-3)$
E) $y-2 = \frac{-4}{3}(x+3)$ D) $y+2 = \frac{4}{3}(x-3)$

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.6/10.1: Derivatives of Parametric Equations

A curve C is defined by the parametric equations

$$x = t^2 - 4t + 1$$
 and $y = t^3$. Determine the equation of the
line tangent to the graph of C at the point (1, 64)?
Determine the horizontal and vertical tangents for the
parametric curve
A) $x = 1 - t \ y = t^2 - 4t$
B) $x = \cos\theta \ y = 2\sin(2\theta)$

$$\frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}$$
The derivative of e^s is: (Itself)(Derivative of the power)

$$\frac{d}{dx}(a^{v}) = a^{s} \ln a \frac{du}{dx}$$
The derivative of a^{s} is:
(Itself)(*In* of the base)(Derivative of the power)

$$\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx}$$
The derivative of h^{s} is: (Itself)(*In* of the base)(Derivative of the power)
The derivative of h^{s} is: (Itself)(*In* of the base)(Derivative of the power)

$$\frac{d}{dx}\log_{a}u = \frac{1}{u\ln a}\frac{du}{dx}$$
The derivative of $h u$ is:
(one over what you are taking the ln of) times now you should be in the
numerator (Derivative of what you are taking the ln of)

$$\frac{d}{dx}\sin^{-1}u = \frac{1}{\sqrt{1-u^{2}}}\frac{du}{dx}$$
• One over the square root of 1 – the ratio
squared all times the derivative of the ratio.

$$\frac{d}{dx}\cos^{-1}u = -\frac{1}{\sqrt{1-u^{2}}}\frac{du}{dx}$$
• Negative One over the square root of 1 – the
ratio squared all times the derivative of the ratio.

$$\frac{d}{dx}\tan^{-1}u = \frac{1}{1+u^2}\frac{du}{dx}$$

• One over 1 + the ratio squared all times the derivative of the ratio.

$$\frac{d}{dx}\cot^{-1}u = -\frac{1}{1+u^2}\frac{du}{dx}$$

 Negative One over 1 + the ratio squared all times the derivative of the ratio.

$$\frac{d}{dx}\sec^{-1}u = \frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}$$

• One over the absolute value of the ratio times the square root of the ratio squared minus 1 all times the derivative of the ratio.

$$\frac{d}{dx}\csc^{-1}u = -\frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}$$

Negative One over the absolute value of the ratio times the square root of the ratio squared minus 1 all times the derivative of the ratio.

When you do the power rule the base does not change
only the power
- Once you have done the power rule, you are done
with the powers
When you do the derivative of a trig function the angle
does not change
Chain Rule
• Polynomial
- (Power Rule)(Derivative Base)

$$y = (1 + x^2)^5$$

 $y' = 5(1 + x^2)^4 \cdot 2x$
• Trig Function
- (Power rule)(Derivative of base)(Derivative of angle)
 $y = \sin^5(3x)$
 $y' = 5\sin^4(3x) \cdot (\cos \beta x)) \cdot 3$

Chain Rule• Product and quotient rule over rule everything
when you have 2 functions
$$y = x(\sin 3x)^{1/2}$$

 $y' = x[\frac{1}{2}(\sin 3x)^{-1/2} \cdot (\cos(3x)) \cdot 3] + (\sin 3x)$
- If the base is a product or quotient rule then you
must start with the power rule
 $y = (x \sin 3x)^{1/2}$
 $y' = \frac{1}{2}(x \sin 3x)^{-1/2} \cdot [x(\cos(3x)) \cdot 3] + (\sin 3x)$