CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. 116-126

What you'll Learn About

- How to find the derivative of:
- Functions with positive and negative integer powers
- Functions with products and quotients

Find the equation for the tangent line at the given point
Q) $y=\frac{x^{5}+2 x}{x^{2}}$ at $\mathrm{x}=1$
R) $y=5 x^{2}+3 \quad$ at $\mathrm{x}=3$
S) Find an equation of the line perpendicular to the tangent to the curve $y=4 x^{3}-6 x+2$ at the point $(2,22)$.
T) Find the points on the curve $y=x^{3}-3 x^{2}-9$ where the tangent is parallel to the x -axis

Flowchart: Selecting a Procedure for Derivatives

$3 \mid \mathrm{Page}$

CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.5: Derivatives of Trig Functions pg. 141-147

What you'll Learn About

- How to find the derivative of a trig function

Find equations for the lines that are tangent and normal to the graph of $y=2 \cos x$ at $x=\frac{\pi}{4}$

Find the points on the curve $y=\cot x, 0 \leq x \leq \frac{\pi}{2}$, where the tangent line is parallel to the line $y=-2 x$.

CALCULUS: Graphical,Numerical,Algebraic by Finney, Demana, Watts and Kennedy
Chapter 3: Derivatives 3.8: Derivatives of Inverse Trig Functions pg.165-171
What you'll Learn About

- How to find the derivative of inverse functions

1. Let f be a differentiable function such that
$f(3)=15, f(6)=3, f^{\prime}(3)=-8$ and $f^{\prime}(6)=-2$.
The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(15)$?
a) $-1 / 2$
b) $-1 / 8$
c) $1 / 6$
d) $1 / 3$
e) The value of $g^{\prime}(15)$ cannot be determined
2. Let f be a differentiable function such that

- $f(3)=5, f(8)=4, f^{\prime}(3)=6$ and
$f^{\prime}(8)=3$.
The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(4)$?
a) $-1 / 2$
b) $-1 / 8$
c) $1 / 6$
d) $1 / 3$
e) The value of $g^{\prime}(4)$ cannot be determined

3. Let f be a differentiable function such that
$f(3)=5, f(8)=4, f^{\prime}(3)=6$ and $f^{\prime}(8)=3$.
The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(5)$?
a) $-1 / 2$
b) $-1 / 8$
c) $1 / 6$
d) $1 / 3$
e) The value of $g^{\prime}(5)$ cannot be determined
4. If $f(2)=-3, \mathrm{f}^{\prime}(2)=\frac{4}{3}$, and $\mathrm{g}(\mathrm{x})=\mathrm{f}^{-1}(x)$, what is the equation of the tangent line to $g(x)$ at $\mathrm{x}=-3$?
A) $y-2=\frac{-3}{4}(x+3)$
B) $y+2=\frac{-3}{4}(x-3)$
C) $y-2=\frac{3}{4}(\mathrm{x}+3)$
D) $y+3=\frac{3}{4}(x-2)$
E) $y-2=\frac{4}{3}(x+3)$
5. If $f(2)=-3, f^{\prime}(2)=\frac{-4}{3}$, and $g(x)=\mathrm{f}^{-1}(x)$, what is the equation of the tangent line to $g(x)$ at $\mathrm{x}=-3$?
A) $y-2=\frac{-3}{4}(x+3)$
B) $y+2=\frac{-3}{4}(x-3)$
C) $y-2=\frac{3}{4}(\mathrm{x}+3)$
D) $y+2=\frac{4}{3}(x-3)$
E) $y-2=\frac{4}{3}(x+3)$
6. If $f(2)=-3, \mathrm{f}^{\prime}(2)=\frac{-3}{4}$, and $\mathrm{g}(\mathrm{x})=\mathrm{f}^{-1}(x)$,
what is the equation of the tangent line to $g(x)$ at $\mathrm{x}=-3$?
A) $y-2=\frac{-3}{4}(x+3)$
B) $y+3=\frac{-4}{3}(x+2)$
C) $y-2=\frac{3}{4}(\mathrm{x}+3)$
D) $y+2=\frac{4}{3}(x-3)$
E) $y-2=\frac{-4}{3}(x+3)$

CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.6/10.1: Derivatives of Parametric Equations

What you'll Learn About
How to take the derivative of functions in Parametric Form

Graph the parametric function given
A) $x=\mathrm{t}^{2}-3 \quad \mathrm{y}=\mathrm{t} \quad \mathrm{t} \geq 0$
B) Find the derivative of the function at $t=5$
C) Find the equation of the tangent line at $\mathrm{t}=1$
$x=3 t \quad \mathrm{y}=9 \mathrm{t}^{2}$
D) Find the equation of the tangent line at $\theta=\frac{\pi}{4}$ $x=\cos \theta \quad \mathrm{y}=\sin \theta$
E) Find the equation of the tangent line at $t=\pi$ $x=\sec ^{2}(2 t)-1 \quad \mathrm{y}=\tan (2 \mathrm{t})$

$\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}$
The derivative of e^{x} is: (Itself)(Derivative of the power)

$$
\frac{d}{d x}\left(a^{u}\right)=a^{u} \ln a \frac{d u}{d x}
$$

$$
\frac{d}{d x} \ln u=\frac{1}{u} \frac{d u}{d x}
$$

$$
\frac{d}{d x} \log _{a} u=\frac{1}{u \ln a} \frac{d u}{d x}
$$

The derivative of a^{x} is:
(Itself)(ln of the base)(Derivative of the power)

The derivative of a^{x} is: (Itself)($l n$ of the base)(Derivative of the power)

The derivative of $\ln u$ is:
(one over what you are taking the ln of) times now you should be in the numerator (Derivative of what you are taking the \ln of)

$$
\frac{d}{d x} \sin ^{-1} u=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}
$$

- One over the square root of 1 - the ratio squared all times the derivative of the ratio.

$$
\frac{d}{d x} \cos ^{-1} u=-\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}
$$

- Negative One over the square root of 1 - the ratio squared all times the derivative of the ratio.

$$
\frac{d}{d x} \tan ^{-1} u=\frac{1}{1+u^{2}} \frac{d u}{d x}
$$

- One over 1 + the ratio squared all times the derivative of the ratio.

$$
\frac{d}{d x} \cot ^{-1} u=-\frac{1}{1+u^{2}} \frac{d u}{d x}
$$

- Negative One over 1 + the ratio squared all times the derivative of the ratio.

$$
\frac{d}{d x} \sec ^{-1} u=\frac{1}{|u| \sqrt{u^{2}-1}} \frac{d u}{d x}
$$

- One over the absolute value of the ratio times the square root of the ratio squared minus 1 all times the derivative of the ratio.

$$
\frac{d}{d x} \csc ^{-1} u=-\frac{1}{|u| \sqrt{u^{2}-1}} \frac{d u}{d x}
$$

Negative One over the absolute value of the ratio times the square root of the ratio squared minus 1 all times the derivative of the ratio.

Chain Rule

- Product and quotient rule over rule everythin when you have 2 functions

$$
y=x(\sin 3 x)^{1 / 2}
$$

$$
y^{\prime}=x\left[\frac{1}{2}(\sin 3 x)^{-1 / 2} \cdot(\cos (3 x)) \cdot 3\right]+(\sin 3 x
$$

- If the base is a product or quotient rule then you must start with the power rule $y=(x \sin 3 x)^{1 / 2}$

$$
y^{\prime}=\frac{1}{2}(x \sin 3 x)^{-1 / 2} \cdot[x(\cos (3 x)) \cdot 3]+(\sin 3 x)
$$

