0 ,, (Intermediate Value	Theorem						
Page 16	t (minutes)	0	2	5	8	12		
	V _A (t) (meters/m	0	100	40	-120	-150		
	in)					CDU	tinua	
	function v _A (are given in	y, measured in (t), where tim the table abo	n meters per n e t is measure ve.	ninute, is gi	ven by a dif s. Selected	d track. Tra ferentiable values for v	/A(t)	
-	b) Do the data in the table support the conclusion that train A's velocit is 60 meters per minute at some time t with 2 < t < 5? Give a reason for your answer. yes, since the function is differentiable between v(2)=100 and v(5)=40 the train h							
7	yes, since	(2)=100	and vi	15 <u>di</u> 5) = 40	the f	train	has	
	to reach				,			
	x 0)	1	2	3	ś	-	
	f(x) 3		0	k	1		-	
2	2(MC). The function are given in the tab the [0, 3] if k =	le above. The	e equation f(x	(i) = 1.5 mus (iii) = 1.5 mus (iii) 1 (iii) 1	E) 2	st 3 solution must 1.5 times	ns in	
(4,5)	3(MC). Let f be a continuous function on the closed interval [-2, 4]. If $f(-2) = -3$ and $f(4) = 5$, then the Intermediate Value Theorem guarantees that A) $f(c) = 1$ for at least one c between -3 and 5 (-2, -3) B) $-3 \le f(x) \le 5$ for all x between -2 and 4 C) $f'(c) = \frac{4}{3}$ for at least one value of c between -2 and 4						_	
5 + (
• +-3	D) f(1) = 2							
,	E) $f(c) = 2$ for	at least one c	between -2 a	nd 4				

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table gives values of the functins and their first derivatives (their slopes) at selected values of x. the function h is given by h(x) = f(g(x)) - 6

x	f(x)	f'(x)	g(x)	g'(x)
1	6	3	2	1
2)	9	1	3	1
3	10	4	4	2
4	11	1	6	6
5	12	1	12	6
6	13	2	18	7

4(FR) Explain why there must be a value r for $2 \le r \le 4$ such that h(r) = 5.

$$h(4) = f(g(4)) - 6$$

$$h(2) = f(g(2)) - 6$$

$$= f(3) - 6$$

$$= 10 - 6$$

$$h(2) = 4$$

If x is between 2 and 4 there will be a y Valve of 5.

t (hours)	0	1	3	4	7	8	9
L(t) (people)	120	156	176	126	150	80	0

5(FR). Concert tickets went on sale at noon (t = 0) and were sold out within 9 hours. The number of people waiting in line to purchase tickets at time t is modeled by the differentiable function L for $0 \le t \le 9$. Values of L(t) at various times t are shown in the table above.

How many times during the last 5 hours will L(t) equal 130? Give a reason for your

Twice. Since L(t) is differentiable between L(4) = 126 and L(7) = 150 the number of people will equal 130.

Chapter 3: Derivatives

3.2: Differentiability pg. 109-115

What you'll Learn About

- How the derivative might fail to exist
- Differentiability implies local linearity
- Differentiability implies Continuity

Different:abk

- Function is continuous and there is a slope at the specific point

Not a differentiable

but continuous at

- (arners
- vertical tungent
- CUSP

- Find all points where the function, f(x), is differentiable
- b. Find all points where the function is continuous, but not differentiable.
- Find all points where the graph is neither continuous nor differentiable.

Not Differential Not Continuous

differentiable

at x=-3,-2,-1,2 a) everywhere but

Not Differentiable (No slope) Discontinuities

Cosp: where 2 curves meet

Corner: where 2 lines or one line/ Louve meet

- a) everywhere but at x=-1 and x=2
- b) corner (x=2) cusp
- () jump (x=-1)

- THE CUSPS / V. T b.
- Find all points where the function, f(x), is differentiable.
 - Find all points where the function is continuous, but not differentiable.
 - Find all points where the graph is neither continuous nor differentiable.

- a) everywhere but

 X=-2, 1, 4

 Corner jump VA
- b) X=-2 (corner)
- c) x 2,1,4

not differentiable at x=0 Vertical tangent No Slope - Not Differentiable at Removeable Discontinuities Vertical Asymptotes Jumps Corners Cusps Vertical Tangents