

2005 BC2 (Calculator)

The curve above is drawn in xy-plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \le \theta \le \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta)$.

- a. Find the slope of the curve at the point $\theta = \frac{\pi}{2}$.
- c. Find the angle θ that corresponds to the point on the curve with x-coordinate -2.
- d. For $\frac{\pi}{2} < \theta \le \frac{2\pi}{3}$, $\frac{dr}{d\theta}$ is negative. What does this fact say about r? What does this fact say about the curve?

e. Find the value of θ in the interval $0 \le \theta \le \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.

2013 BC 2

The graphs of the polar curves r = 3 and $r = 4 - 2\sin\theta$ are shown in the figure above. The curves intersect when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.

- Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 - 2\sin\theta$. Find the area of S.
- A particle moves along the polar curve $r = 4 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.

For the particle described in part (b), find the position vector in terms of t. c. Find the velocity vector at time t = 1.5.

$$\Theta = \frac{11}{2}, \frac{3\pi}{2}$$

54. Shared by the cardiod $r = 2(1 + \cos\theta)$ and $r = 2(1 - \cos\theta)$

$$A = \frac{1}{2} (4) \int_{0}^{\pi/2} \left(1 - \cos \theta \right)^{2}$$

52. Shared by r = 1 and $r = 2\sin\theta$

$$\frac{1}{2} = \sin \theta$$

$$\Theta = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$A = \frac{1}{2}(2) \int_{0}^{\pi/6} (2\sin\theta)^{2} d\theta + \frac{1}{2} \int_{\overline{G}}^{5\pi/6} 1 d\theta =$$

56. Inside the four-petaled rose $r = 4\cos 2\theta$ and outside the circle r = 2

$$A = \frac{1}{2}(8) \int_{0}^{\pi/6} (4\cos 2\theta) d\theta - \frac{1}{2}(8) \int_{0}^{\pi/6} (2)^{2} d\theta$$

Determine the polar curves and shaded area represented by the integral given below.

$$A = \frac{1}{2} \int_{\pi/6}^{5\pi/6} (2\sin\theta)^2 d\theta - \frac{1}{2} \int_{\pi/6}^{5\pi/6} (1)^2 d\theta$$

