\qquad

1) a) Find the area of the region that lies inside the graph of $\mathbf{r}=\mathbf{2 - \operatorname { s i n }} \mathbf{2 \theta}$. Set up the intergral and then use your calculator to evaluate the area..
(b) Find the slope $(d y / d x)$ of the curve $r=2-\sin 2 \theta$ as a function of θ then evaluate it at $\theta=\frac{\pi}{4}$. Show the work that leads to your answer.
(c) Find $\frac{d r}{d \theta}$ for curve $r=2-\sin 2 \theta$ and evaluate it at $\theta=\frac{\pi}{4}$. Then interpret what the value of $\frac{d r}{d \theta}$ means in terms of the movement of the particle. Show the work that leads to your answer.
d) A particle moves along $r=2-\sin 2 \theta$ so at time t, seconds $\theta=t^{2}$, Find the time on the interval $0 \leq t \leq 1$ fo which the paricle's x-coordinate is 1 .
e) For the partice described in part (d ,) find the position vector in terms of t .
f) Using the position found in part (e), find the velocity vector at $t=2$ seconds.

Find the area of the specified region. Set up the intergral and use your calculator to find the area.
2) inside one leaf of the four- leaved rose $r=3 \sin 2 \theta$
3) inside the smaller loop of the limacon $r=5+10 \cos \theta$

Find the area of the specified region.
4) shared by the circle $r=6$ and the cardioid $r=6(1+\sin \theta)$

5) Outside the circle $r=5$ and inside the cardioid $r=5(1+\cos \theta)$

6) The graph of the polar curve $r=1-2 \cos \theta$ for $0 \leq \theta \leq \pi$ is shown. Let S be the shaded region in the third qu bounded by the curve and the x-axis.

a) Write an integral expression for the area of S.
b) Write expressions for $\frac{d x}{d \theta}$ and $\frac{d y}{d \theta}$ in terms of θ.
c) Write an equation in terms of x and y for the line tangent to the graph of the polar curve \bar{c} point $\theta=\frac{\pi}{2}$. Show the computations that lead to your answer.

