\qquad

Solve the problem.

1) A ladder is slipping down a vertical wall. If the ladder is 10 ft long and the top of it is slipping at the constant rate of $3 \mathrm{ft} / \mathrm{s}$, how fast is the bottom of the ladder moving along the ground when the bottom is 8 ft from the wall?
2) A container is the shape of an inverted right circular cone has a radius of 5 inches at the top and a height of 6.00 inches. At the instant when the water in the container is 2 inches deep, the surface level is falling at the rate of -. 400 in ./s. Find the rate at which water is being drained.

Find an equation for the line tangent to the curve at the point defined by the given value of t.
3) $x=6 \sin t, y=6 \cos t, t=\frac{\pi}{4}$

Solve the problem.

4) Find the points at which the tangent to the curve $x=6-t^{2}, y=t^{3}-5 t$ is vertical and horizontal.

For the equation below, do each of the following.
5) $2 y^{2}+7 x^{2}-13=0$
a) Find dy/dx by implicit differentiation.
b) Determine the equation of the tangent line when $x=1$.
c) Find the points on the curve where the lines tangent to the curve are vertical.
d) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y.

