CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 4: Applications of Derivatives (Interpreting graphs p. 215

What you'll Learn About: How to interpret graphs of f(x), f'(x), and f''(x)

- 22) Use the graph of the function f to estimate where
- a) f' = 0 b) f' > 0 c) f' < 0 d) f'' = 0 e) f'' > 0 f) f

- a) x=-1.25,0,1.25 C.P.
- b) (-1,25,0) v (1.25,00)
- c) (-00,-1.25) v (0,1.25)
 - d) x=-75,.75
- e) (-0, -.75) v (.75,0)
- f) (-.75,.75)
- 22) Use the graph of the function f' to estimate the intervals on which
- a) f is increasing b) f is decreasing c) f is concave up d) f is concave down and then use the graph of the function f' to find
- e) any extreme values and f) any points of inflection

- a) (-2,0) v (0,2)
- b) (-00,-2) v (2,00)
- e) x=-2 local min
- 4) x=-1,0,1 (max/min of f)
- () (-0,-1) v (0,1)

15|Page

30) Using the graph of the position function find the approximate values at which v(t) = 0 and when a(t) = 0.

- 50) Use the graph of the function f' to estimate the intervals on which a) f is increasing b) f is decreasing c) f is concave up d) f is concave down and then use the graph of the function f' to find
- e) any extreme values and f) any points of inflection (Assume that the function f is continuous from [0, 3]

- a) (0,1) v(1,2) v(2,3)
 - b) never
 - e) x= 0 Abomin

- c) (0,1)
- d) (1,2)
- f) x=1

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 4: Applications of Derivatives Sketching graphs p. 203

40a)
$$f(2) = 3$$

$$f'(2) = 0$$

$$f'(x) > 0$$
 for x < 2

$$f'(x) < 0 \text{ for } x > 2$$

$$f'(2) = 0$$

$$f'(x) > 0$$
 for $x \ne 2$

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 4: Applications of Derivatives Sketching graphs p. 215-216

Sketch a continuous curve

X	Y	Curve	
x < -2		Increasing, concave down	
-2	1	Horizontal tangent	
-2 < x < 1		Decreasing, concave down	
1/2	-1	Inflection Point	
1	-4	Horizontal Tangent	
$1 \le x \le 3$		Increasing, concave up	
3	5	Inflection Point	
4	7	Horizontal tangent	
x > 4		Increasing, concave up	

Sketch a continuous curve if the function below is an even function that is continuous on [-3,3]

X	0	1	2	3
f	0	2	0	-2
f'	3	0	DNE	-3
f"	0	-1	DNE	0

X	$0 \le x \le 1$	$1 \le x \le 2$	$2 \le x \le 3$
f	+	+	-
f'	+	-	-
f''	-	-	-

Summary of interpreting Graphs

		Given graph of f(x)	Given graph of $f'(x)$	Given graph of $f''(x)$
f(x) has a Critical Point	f'(x) = 0 $f'(x) Und$	Slope of f(x) = 0 Look for max/mins of f(x)	Find the x-intercepts of the $f'(x)$ graph	X
f(x) increasing	f'(x) > 0	Slope of f(x) is positive Look where f(x) is increasing	Find where the $f'(x)$ graph is above the x-axis	X
f(x) decreasing	f'(x) < 0	Slope of f(x) is negative Look where f(x) is decreasing	Find where the $f'(x)$ graph is below the x-axis	X
f(x) has a possible inflection point	f''(x) = 0 $f''(x) Und$	Trace f(x) see where the concavity changes	Find where the $f'(x)$ graph changes slope These should be the max and mins of the $f'(x)$ graph	Find the x- intercepts of the $f''(x)$
f(x) is concave up	f''(x) > 0	Trace f(x) see when the graph is concave up	Find where the $f'(x)$ graph is increasing Slope of $f'(x) > 0$	Find where the graph of $f''(x)$ is above the x-axis
f(x) is concave down	f''(x) < 0	Trace f(x) see when the graph is concave down	Find where the $f'(x)$ graph is decreasing Slope of $f'(x) < 0$	Find where the graph of $f''(x)$ is below the x-axis
Local Maximum		Look where the graph of f(x) changes from increasing to decreasing	Look where the graph of $f'(x)$ crosses the x-axis and moves from above to below the axis	х
Local Minimum		Look where the graph of f(x) changes from decreasing to increasing	Look where the graph of $f'(x)$ crosses the x-axis and moves from below to above the axis	X
Points of Inflection		Trace f(x) see where the concavity changes	Find where the $f'(x)$ graph changes slope These should be the max and mins of the $f'(x)$ graph	Find where the graph of $f''(x)$ crosses the x- axis and moves from above to below the x-axis or below to above the axis

Summary of Characteristics of graphs

If f' is undefined or if f' = 0, this is a Critical Point (Possible Local Max or Min)

If f' > 0 the original function f is increasing

If f' < 0 the original function f is decreasing

If f''' is undefined or if f''' = 0, this is a possible Inflection Point (Change in concavity)

If f'' > 0 the original function f is concave up

If f''' < 0 the original function f is concave down

Anytime the graph changes concavity you have an inflection point

To find intervals of increase and decrease

- Find the first derivative
- 2. Set the first derivative equal to zero (These will be your critical points)
 - Don't forget to check when the first derivative is undefined
- 3. Pick values to the left and right of your critical points
- 4. If f' > 0 the original function f is increasing
- 5. If f' < 0 the original function f is decreasing

To find intervals of concavity

- 1. Find the second derivative
- Set the second derivative equal to zero (These are your possible inflection points)
 - Don't forget to check when the second derivative is undefined
- 3. Pick values to the left and right of your possible inflection points
- 4. If f'' > 0 the original function f is concave up
- 5. If f'' < 0 the original function f is concave down
- If f" changes sign that is a point of inflection

To find a local/relative maximum or local/relative minimum

Use the first derivative test

- If your original function changes from increasing to decreasing you have a local maximum
- If your original function changes from decreasing to increasing you have a local minimum

Use the 2nd derivative test

- Plug your critical points into your second derivative
- If your original function is concave up at the critical point, the critical point is a local min
- If your original function is concave down at the critical point, the critical point is local max

Absolute Max/Min

- 1. Plug your critical points and your endpoints back into the original equation
- 2. The biggest value is your absolute max
- 3. Your smallest value is your absolute min

