Derivatives from a table

2015 BC3

1. Johanna jogs along a straight path. For $0 \leq t \leq 40$. Johanna's velocity is given by a differentiable function v. Selected values of $v(t)$, where t is measured in minutes and $\mathrm{v}(\mathrm{t})$ is measured in meters per minute, are given in the table.

t (minutes)	0	12	20	24	40
$v(t)$	0	200	240	-220	150
(meters per minute)					

a) Use the data in the table to estimate the value of $v^{\prime}(16)$.

2014 BC 4

t (minutes)	0	2	5	8	12
$\mathrm{v}_{\mathrm{A}}(\mathrm{t})$ $($ meters $/ \mathrm{min})$	0	100	40	-120	-150

4. Train A runs back and forth on an east-west section of railroad track. Train A's velocity, measured in meters per minute, is given by a differentiable function $v_{A}(t)$, where time t is measured in minutes. Selected values for $v_{A}(t)$ are given in the table above.
a) Find the average acceleration of train A over the interval $2 \leq t \leq 8$.

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $\mathrm{t}, 0 \leq t \leq 6$, is given by a differentiable function C , where t is measured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table.

t (minutes)	0	1	2	3	4	5	6
$\mathrm{C}(\mathrm{t})$ ounces	0	5.3	8.8	11.2	12.8	13.8	14.5

a) Use the data in the table to approximate $C^{\prime}(3.5)$. Show the computations that lead to your answer, and indicate units of measure.

2011 \#2

t (minutes)	0	2	5	9	10
$\mathrm{H}(\mathrm{t})$ degrees C	66	60	52	44	43

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \leq t \leq 1 \mathrm{Q}$ where time t is measured in minutes and temperature $\mathrm{H}(\mathrm{t})$ is measured in degrees Celsius. Values of $\mathrm{H}(\mathrm{t})$ at selected values of time t are shown in the table above

Use the data in the table to approximate the rate at which the temperature of the tea is changing at time $t=3.5$. Show the computations that lead to your answer.

$\underline{2012 \text { \#4 }}$

The function f is twice differentiable for $\mathrm{x}>0$ with $\mathrm{f}(1)=15$ and $f^{\prime \prime}(1)=20$. Values f^{\prime}, the derivative of f , are given for selected values of x in the table.

x	1	1.1	1.2	1.3	1.4
$f^{\prime}(x)$	8	10	12	13	14.5

a) Write an equation for the line tangent to the graph of f at $\mathrm{x}=1$. Use this line to approximate $f(1.4)$.

t (minutes)	0	4	9	15	20
$\mathrm{W}(\mathrm{t})$ degrees F	55.0	57.1	61.8	67.9	71.0

The temperature of water in a tub at time t is modeled by a strictly increasing, twice differentiable function, W, where $W(t)$ is measured in degrees Fahrenheit and t is measured in minutes. At time $t=0$, the temperature of the water is $55^{\circ} \mathrm{F}$. The water is heated for 30 minutes, beginning at time $t=0$. Values of $W(t)$ at selected times t for the first 20 minutes are given in the table above.
a) Use the data in the table to estimate $W^{\prime}(12)$. Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.

2010 \#2
A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon ($t=0$) and 8 P.M. ($t=8$). The number of entries in the box t hours after noon is modeled by a differentiable function E for $0 \leq t \leq 8$. Values of $\mathrm{E}(\mathrm{T})$, in hundreds of entries, at various times t are shown in the table.

t (hours)	0	2	5	7	8
$\mathrm{E}(\mathrm{t})$ (hundreds of entries)	0	4	13	21	23

b) Use the data in the table to approximate the rate in hundreds of entries per hour, at which entries were being deposited at time $t=6$. Show the computations that lead to your answer.

2009 \#5
Let f be a function that is twice differentiable for all real numbers. The table gives values of f for selected points in the closed interval $2 \leq x \leq 13$.

x	2	3	5	8	13
$f(x)$	1	4	-2	3	6

Estimate $f^{\prime}(4)$. Show the work that leads to your answer.

