# Series Review 

Search and Rescue

# Determine which test would be used to determine convergence or divergence 

$$
\sum_{n=1}^{\infty} \frac{n+1}{3 n+1}
$$

Write the $5^{\text {th }}$ degree polynomial that represents $\mathrm{f}(\mathrm{x})$ centered at $\mathrm{x}=0$

$$
f(x)=\sin (2 x)
$$

## Determine which test would be used to determine convergence or divergence

$$
\sum_{n=1}^{\infty}\left(\frac{\pi}{6}\right)^{n}
$$

# Determine which test would be used to determine convergence or divergence 

$$
\sum_{n=1}^{\infty} n e^{-n^{2}}
$$

Write the $4^{\text {th }}$ degree polynomial that represents the function Centered at $\mathrm{x}=0$

$$
f(x)=\cos (3 x)
$$

# Determine which test would be used to determine convergence or divergence 

$$
\sum_{n=1}^{\infty} \frac{1}{3 n+1}
$$

# Determine which test would be used to determine convergence or divergence 

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{3}{4 n+1}
$$

## The interval of convergence for the series $\sum_{n=1}^{\infty} \frac{x^{3 n}}{n 8^{n}}$ is

# Determine which test would be used to determine convergence or divergence 

$$
\sum_{n=1}^{\infty} \frac{n!}{10^{n}}
$$

Write the 3rd degree polynomial for $f(x)$ given the following information

$$
f(0)=3, f^{\prime}(0)=2, f^{\prime \prime}(0)=-5, f^{\prime \prime \prime}(0)=4
$$



## Determine which test would be used to determine convergence or divergence

$$
\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n+1}\right)^{n}
$$

Find the coefficient of the sixth degree term of the Taylor series expansion for $\mathrm{f}(\mathrm{x})$ centered at $\mathrm{x}=0$

$$
f(x)=e^{\frac{-1}{2} x^{2}}
$$

## If the first 5 terms of the Taylor expansion for $\mathrm{f}(\mathrm{x})$

 about $\mathrm{x}=0$ are:$3-7 x+\frac{5}{2} x^{2}+\frac{3}{4} x^{3}-6 \mathrm{x}^{4}$ then $\mathrm{f}^{4}(0)=$

